Fibrations by Cayley submanifolds
I just submitted my third paper to the arXive, you can find it here. This completes my DPhil project by proving that Cayley fibrations are stable under small perturbations of the Spin(7)-structure. This is done by looking at how nearly singular Cayleys behave under perturbation. It turns out that at least up to they behave as expected, with the gluing described in my second paper giving a good approximation. We do this by solving the linear Cayley equation on the glued manifold and showing that the solutions (which describe the first derivative of the Cayley fibration so to speak) can also be obtained by gluing well-understood pieces. We use this to complete the longstanding programme of Kovalev to construct coassociative fibration on twisted connected sum manifolds.
Talk at SCSHGAP Conference May 16th
Graph algorithms
Here is the handout for today’s training session:
Sorting algorithms
Talk at UCL/KCL Junior Geometry Seminar
Here are the slides for a talk I am giving at the UCL/KCL Junior Geometry Seminar on March 4th 2024.
Oxford go tournament 2024
Last weekend, the Oxford go tournament 2024 was held again for the first time after the pandemic. In total 54 players were present, some of which coming from as far away as Nottingham! In attendance were some of the best players in the UK, as well as almost complete beginners. Harry put in a lot of work to organise a side 9×9 tournament that was particularly popular with the youngsters. One of them played 39 (!) games in addition to their 3 tournament (19×19) games.
Thanks to generous sponsorship we were able to hand out quite a few prizes such as vouchers for online courses or Go books by a small German publishing company (Brett&Stein, you should check them out). We were able to bring out the customary Oxford Go club scroll as decoration, and they were much appreciated.
While we had lovely weather on the day, mother nature still prompted us to stay inside, for outside the rain was not quite gone yet.
Organising the tournament was quite a bit of work, but I hope that the work that Harry and I did this year can translate into a more streamlined process next year. That should leave more time to make sure that the clocks are all set correctly (whoops) and that the printer is working properly when it is needed (likely no amount of preparation is going to fix this, did you know that HP need to be connected to the internet EVEN if you just want to use them with a USB cable?). At least we left some room for improvement! See you all next year.
Deformation theory of Cayley submanifolds
I just published my first paper on the arxive here. It’s about the deformation theory of conically singular and asymptotically conical Cayley manifolds, based on the work of McLean and Moore. I prove the usual theorems about the existence of Kuranishi charts and discuss some relations to lower-dimensional geometries, such as special Lagrangian, complex and coassociative geometries. For example, special Lagrangians in Calabi-Yau fourfolds will always be obstructed as Cayleys. It is the first in a series of three papers working towards constructing fibrations of compact Spin(7) manifolds by Cayley submanifolds. The next paper which is about the desingularisation of Cayley submanifolds will follow shortly.
Weak Cayley fibrations
Slides for a talk at the Geometry and Analysis seminar in Oxford can be found here.
Instanton Floer homology
Floer homology is in essence the extension of the usual Morse homology of closed finite-dimensional manifolds to certain infinite-dimensional situations, where the naive Morse index of a critical point is not necessarily finite, and compactness becomes a subtle issue. In these notes we focus on the instanton Floer homology of a homology three-sphere , which is the Morse homology of the Chern-Simons functional . Defined on the infinite dimensional space of gauge equivalence classes of -connections on and being circle-valued, this functional brings in further features not present in classical Morse homology. For one, due to the presence of reducible connections, the gauge equivalence classes of connections only form a manifold away from a collection of singular points. Furthermore, since is circle-valued it can occur that gradient flow lines form loops, making the trajectory spaces more subtle to describe.
In order to address the difficulties arising from the definition of the Morse index, we will introduce the spectral flow of a family of self-adjoint operators between separable Hilbert spaces, a tool common to all Floer-type theories. Using it, we will be able to define a relative index between two critical points of . This index will only be -valued however, due to looping gradient flow lines. To circumvent the issues arising from reducible connections, we will restrict ourselves to homology three-spheres, for which achieving transversality is easier than for other classes of three-manifolds. A feature of which makes it particularly suited for Morse homology is that its critical points and gradient trajectories have geometrical interpretations. The critical points of are flat connections on , and the flow lines are instantons over the Riemannian tube which join two connections. As we will see, instantons are a special case of Yang-Mills connections, which allows us to use Uhlenbeck’s compactness theorem to derive the compactness up to broken trajectories of the trajectory spaces. The invariant we will obtain in the end takes the form of a -graded vector space over the field . For the usual three-sphere and the PoincarĂ© homology sphere they are given by:
Thus the Floer homology groups will be unrelated to the usual homology groups, and provide a stronger invariant. To conclude, we will investigate further properties of the Floer groups, such as their relation to the representation-theoretic Casson invariant, which appears as the Euler characteristic of the Floer groups, and -dimensional topological quantum field theories.
We will move according to the following outline. In the first chapter, we introduce electromagnetism as an example of an abelian gauge theory, familiarise ourselves with the concepts we will later encounter in the non-abelian setting and provide a link between gauge theory and topology of three-manifolds via Hodge theory. In the second chapter, we will then recall principal bundles properly, fix the notation, and derive the relation between three- and four-dimensional -gauge theory. Next, we will introduce the Chern-Simons and Yang-Mills functionals and in the third chapter and analyse the relation between -gradient flow lines and instantons, which are the local minimizers of . We will also investigate the local picture around a critical point of these functionals. In the last chapter we will construct the trajectory spaces and the Floer homology groups from a chain complex generated by flat connections, emphasising the Fredholm analysis. We will show independence of auxiliary data and of the perturbation chosen, where it will be important to restrict to the case of homology three-spheres.
We assume that the reader is familiar with differential geometry (bundles and connections, Riemannian geometry, de Rham cohomology, Morse homology), algebraic topology (especially computational tools in (co)homology theories, Poincaré duality, intersection theory, some homotopy theory), as well as functional analysis (Sobolev spaces on open domains, differential operators on ).
These notes do not contain original work, but merely adapt and combine the literature on the subject, while supplementing explanations where deemed useful. We mostly follow Donaldson’s monograph on the topic, and apply the treatment of Morgan’s lecture notes to give the analytical foundations for the Chern-Simons and Yang-Mills functionals. The first chapter on electromagnetism reshuffles the first part of the excellent lecture notes by Evans on the Yang-Mills equations, and the appendix bundles statements from multiple sources. For references see the PDF.
I would like to thank my supervisor Prof. Will Merry for guiding me through this endeavour with frequent and useful meetings. His (virtual) office door was always open to me, and I appreciated both his technical knowledge in geometry and analysis and his expertise in the wider world of Floer theories, which often provided helpful analogies an additional angles of attack during my study of the instanton flavoured theory.
The entire thesis can be found here.